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Introduction:   

The focus of this research is to correlate the influence of secondary structure and s tability of short 
deoxyoligonucleotides on their ability to induce toll-like receptor 9 (TLR9) mediated cancer cell invasion. Cell 
invasion (metastasis) is a significant problem in the control and treatment of breast cancer.  Our laboratory has 
previously demonstrated enhanced cellular invasion in the MDA-MB-231 breast cancer cells by CpG rich 
deoxyoligonucleotides such as ODN-M362, a 25-base single-stranded CpG-and known agonist for TLR9.  
Although the mechanism(s) for this induction is unknown, our studies reveal a linkage between the structural 
and/or sequence requirements with DNA activation of the cellular invasion process.  More importantly, recent 
studies from our laboratory have demonstrated that DNA fragments isolated from breast apoptotic cancer cells 
(cells treated with doxorubicin) were highly effective in eliciting TLR9-mediated cancer cell invasion. Unlike the 
TLR9 agonist, ODN-M362, these DNA fragments do not have the phosphorothioate backbone as required by 
ODN-M362 to be an effective TLR9 agonist.   Our recent studies provide a direct correlation between structural 
stability that imparts nuclease resistance with induction of cell invasion.  T he two deoxyoligonucleotide 
structures that have been demonstrated to be most effective in TLR9 induced cell invasion are stem-loops or 
hairpins or G-quadruplex structures.  Our studies have been focused on probing sequence modifications to 
discern influences on structure and stabilities and their correlation with TLR-9 mediated cellular invasion.  Our 
studies demonstrate these small deoxyoligonucleotides to be highly effective in eliciting the TLR9-induced 
invasion process. 
 
BODY 
 
Statement of Work (Aim 3 – Graves) Characterization of the base sequence, secondary structure, and 
stabilities required for deoxyoligonucleotides for the induction of TLR9-mediated cellular invasion  
 
Rationale: CpG deoxyoligonucleotides such as ODN-M362 has been known to exert significant cellular 
responses since reported by Krieg in 1995 (Nature 374, 546-549).(1)  In 2001, Bauer and coworkers reported 
the linkage between ODN-M362 and hT LR9 through activation of a r esponse to bacterial DNA in the cells 
innate immune response.(2)  In 2008, apoptotic DNA was demonstrated to exert similar hTLR9 activation of 
cellular invasion.(3)  Of fundamental interest to our research is the nature of the deoxyoligonucleotide-hTLR9 
interaction.  Specific Aim 3 w ill utilize a b iophysical approach to directly measure these interactions with 
respect to synthetic DNAs designed to examine base sequence, secondary structure, and structural stabilities 
in their interactions with TLR9.  High resolution NMR will be used to characterize the structural properties of 
many of these DNAs (hairpins) as well as their structural stabilities (along with DSC).  Surface Plasmon 
Resonance (BiaCore) will be us ed in conjunction with ITC studies to determine the binding properties 
associated with hTLR9 constructs with both synthetic and na tive DNAs.  These biophysical studies will be 
directly correlated with cell-invasion assays to determine the linkage between DNA properties and their abilities 
to modulate TLR9 induced cellular invasion.  
 

Aim # 3: Probing the Role of DNA Sequence, Structure and Stability in TLR9 Meditated  
Induction of Cellular Invasion.  

 
The mechanism(s) through which deoxyoligonucleotides may exert influence in TLR9 mediated biological 
responses remains unknown.  T he CpG deoxyoligonucleotide (ODN-M362) has long been demonstrated to 
influence TLR9-mediated biological activites; however, recent studies from this laboratory have shown that 
ODN-M362 to be highly influential in stimulating TLR9-mediated cellular invasion.(3)  Our laboratory recently 
demonstrated comparable cellular invasion using DNA obtained from apoptotic cancer cells.  This observation 
is highly significant since this DNA has a “native” sugar-phosphate backbone in contrast to the modified 
“phosphorothioated” backbone of the ODN-M362.  Hence, the initial characterization of ODN-M362 as a TLR9 
ligand may need t o be expanded to more general terms of sequence, DNA secondary structure, and/or 
stabilities.  A  major focus of our research is to correlate these structural and biophysical properties of short 
nucleic acids with their effectiveness in modulating TLR9 mediated cellular activities.  A better understanding of 
the nature of the interaction(s) between TLR9 and short deoxyoligonucleotides may provide key insights into 
strategies for circumventing activation of TLR9-mediated invasion processes. 
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Approach:  The studies proposed in AIM 3 focus on ex amination and characterization of base sequence, 
secondary structural features, and stabilities of synthetic deoxyoligonucleotides.  These deoxyoligonucleotides 
are designed to probe effects of changes in base sequence (CpG versus non-CpG), secondary structural 
properties (single-stranded, hairpin, duplex) and stabilities of concomitant secondary structures on interactions 
with TLR9, activation of TLR9-induced cellular invasion, and nuc lease susceptibility.  Our multifaceted 
approach will encompass a myriad of biophysical approaches including surface plasmon resonance (SPR), 
isothermal titration calorimetry (ITC), and differential scanning calorimetry (DSC) to gain insights into whether 
deoxyoligonucleotides of different sequences and/or structural motifs exhibit altered binding to TLR9.  These 
studies will parallel cellular invasion assays to determine correlations between TLR9 activation by 
deoxyoligonucleotides with their induction of cellular invasion.  Fr om these studies using synthetic 
deoxyoligonucleotide systems we will expand our efforts to include apoptotic DNAs derived from breast cancer 
cells.  
 
Task 3.1.  Purification of TLR9. We have developed an inducible expression system for the portion of the 
extracellular domain of hTLR9 in HEK cells.  This domain has a FLAG-his tag on the C-terminus portion.  The 
hTLR9 will be purified by AKTA-FPLC System (GE Healthcare) with the final purification using a nikel column.   
 
Task 3.2.  Design and Characterization of Selected deoxyoligonucleotides to probe sequence, 
secondary structures, and stabilities as TLR9-mediating binding ligands.  Deoxyoligonucleotides will be 
designed to determine the role of base sequence, structural, and s tabilities as binding ligands for TLR9.  
Preliminary studies have demonstrated that the parent ODN-M362 (25-mer) can be reduced in size to a blunt-
end hairpin (16-mer) with no loss in TLR9-mediated induction of cell-invasion.  Further studies are underway to 
discern the structural and thermodynamic nature of the deoxynucleotide(s) and to determine the lower-limit in 
size that is needed for TLR9-activation.  DSC and NMR (Bruker Avance II-700 with Cryoprobe) are used to 
characterize the secondary structures and stabilities associated with the deoxyoligonucleotides.  R ecent 
studies in our laboratory reveal secondary structure to play a critical role in TLR9 activiation; however, this may 
be a secondary response due to the nuclease resistance imposed by secondary structural features, allowing 
the deoxyoligonucleotide to reach its intracellular target.  
 
Task 3.3.  SPR and ITC studies to determine whether DNA sequence, structure, or stability modulates 
TLR9 interactions.  Current studies in our laboratory examining the role of deoxyoligonucleotides in inducing 
TLR9-mediated cellular invasion demonstrate a clear correlation; however, direct evidence of this interaction is 
required.  With the ability to overexpress hTLR9 in inducible HEK cells, we know propose to directly examine 
the interactions of various DNAs (both demonstrated TLR9-ligands such as ODN-M362 as well as 
deoxyoligonucleotides that show no activity in the cellular invasion assay).  From these studies, we hope to 
discern the structural and biophysical nature of the deoxyoligonucleotide-TLR9 interaction and gain insights as 
to how this interaction influences TLR9 mediated cellular invasion. 
 
Progress to Date (July 15, 2011 – July 14, 2012) 
 
Task 3.1.  Purification of TLR9.  In last year’s annual report, I reported that TLR9 was available from a 
biotech company (BioClone, Inc. in San Diego, CA).  A lthough they advertised hTLR9 was available, they 
could not deliver their product.  We have now gone back to our original expression strategy.  We have 
developed an inducible expression system for the portion of the extracellular domain of hTLR9 in HEK cells.  
This domain has a FLAG-his tag on the C-terminus portion.  The hTLR9 will be purified by AKTA-FPLC System 
(GE Healthcare) with the final purification using a nikel column.  The protein is pure and has been 
demonstrated quite stable for our biophysical studies which probe the preferential binding properties of 
selected DNA structural motifs and sequences. 
 
Task 3.2.  Design and characterization of selected deoxyoligonucleotides to probe sequence, 
secondary structures, and stabilities as TLR9-mediating binding ligands.   We have made significant 
progress in designing novel deoxyoligonucleotides as short as 9 bases in length that can fold into a markedly 
stable hairpin structures.  These deoxyoligonucleotides have demonstrated significant invasion inducing 
activities.  The abi lity for this exogenous DNA to be added to a cell suspension, penetrate the cell membrane, 
and reach the TLR9 target, withstanding nuclease digestion, demonstrates that structural stability that induces 
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nuclease resistance and cellular persistence is important in the functioning of TLR9 agonists and broadens the 
biological role(s) of TLR9 to include much more than innate cellular immunity.   
 
During this year, we have made significant progress in the characterization of several deoxyoligonucleotides 
that have been demonstrated by our laboratory to be highly effective in inducing TLR9-mediated cancer cell 
invasion.  In contrast to ODN-M362 (type C CpG oligonucleotides that is recognized as a classic human TLR9 
ligand) in which the sugar-phosphate linkages are phosphorothiolated to infer nuclease resistance, the 
deoxyoligo-nucleotides that we have found to be highly effective as TLR9-agonists in breast cancer cells have 
natural sugar-phosphate backbones and assume highly stable 3-dimensional structures resulting in nuclease 
resistance.   

 
Figure 1.  ODN-M362 is an effective TLR9 
agonist and is shown to induce TLR9-
mediated breast cancer cell invasion.   
 
CpG rich deoxyoligonucleotides such as 
ODN-M362 have been known to exert 
significant cellular responses since reported 
by Krieg in 1995 (Nature 374, 546-549).(1) In 
2001, Bauer and coworkers reported the 
linkage between ODN-M362 and hT LR9 
through activation of a response to bacterial 
DNA in the cell’s innate immune 
response.(2)  In 2008, apoptotic DNA was 
demonstrated to exert similar hTLR9 
activation of cellular invasion.(3)  Of 
fundamental interest to our research is the 
nature of the deoxyoligo-nucleotide-hTLR9 
interaction.  Specific Aim 3 in this research 
will utilize biophysical approaches to probe 

the structural and energetic stabilities of deoxyoligonucleotides, their ability to modulate TLR9-induced cellular 
invasion, and finally, their correlations with TLR9 activation of the cell-invasion response.  Over the past year, 
we have used high resolution NMR, differential scanning calorimetry, and isothermal titration calorimetry to 
probe the structural and energetic features of selected deoxyoligonucleotides.  Upon successful expression 
and purification of hTLR9, we will use Surface Plasmon Resonance (BiaCore) in conjunction with ITC studies 
to determine the binding properties associated with hTLR9 constructs with both synthetic and native DNAs.  
These biophysical studies will be directly correlated with cell-invasion assays to determine the linkage between 
DNA properties and their abilities to modulate TLR9 induced cellular invasion.  
 
Summary of work completed during this report period.  Over the past year, we have focused our investigations 
on the role of stable secondary structures of deoxyoligonucleotides on their ability to induce toll-like receptor 9 
(TLR9) mediated cancer cell invasion.  E arlier studies from our laboratory (Ilvesaro, et al (2008) “TLR9 
mediates CpG-Oligonucleotide-Induced Cellular Invasion” Molecular Cancer Research 6,  1534-1543) have 
demonstrated small deoxyoligonucleotides to have significant role in breast cancer metastasis (cell invasion) 

and may play an important role in the control and treatment 
of breast cancer.(3)  We started our investigations with the 
primary sequence of ODN-M362 (25-mer shown in Figure 1).  
As a starting sequence we found that the ODN-M362 was a 
true TLR9 agonist only if the backbone was modified as a 
phosphorothioate.  I f the 25-mer sequence had a nat ive 
backbone (normal sugar-phosphate), then the 25-mer was 
ineffective at eliciting TLR9-mediated cell invasion.   
 
Figure 2.  ODN-M362 sequence and several secondary 
structures that it can form; hairpin (top), duplex (bottom). 
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Hence, the comparison of the ODN-M362 with the apoptotic DNA fragments was ambiguous, since the 
fragmented DNAs would carry the “native” sugar-phosphate backbone rather than the phosphorothioate 
modification.  
 
Working from this 25-mer sequence, we used molecular modeling, sequence analysis, and differential 
scanning calorimetry to determine potential secondary structures that could be formed from this sequence and 
came up with an ensemble of hairpins.   
 

Table 1. Sequence variations of ODN M362 and other deoxyoligonucleotides. 

Name  Length Sequence  

ODN M362  25 5'-TCGTCGTCGTTCGAACGACGTTGAT-3' 

Truncated 16 5'-CGTCGTTCGAACGACG-3' 

5' end 20 5'-TCGTCGTCGTTCGAACGACG-3' 

3' end 21 5'-CGTCGTTCGAACGACGTTGAT-3' 

Trunc + T 17 5'-CGTCGTTCTGAACGACG-3' 

Trunc + TT 18 5'-CGTCGTTCTTGAACGACG-3' 

9mer Hairpin 9 5'-CGCGAAGCG-3' 
16mer 
purines 16 5'-CGTCGTGAAAACGACG-3' 

h-Tel22 22 5’-TGGGTTAGGGTTAGGGTTAGGG-3’ 
 
The Table above shows several variations of the ODN-M362 sequence and t hrough these sequences, our 
efforts to enhance both secondary structures and nuclease resistance.   
 

The base sequence of the central region of ODN-M362 
is self-complementary as illustrated in the bottom right 
of Figure 2.  Analyses of the energetics of the central 
16-mer where the 5’ and/or 3’ dangling ends are 
removed is shown in Table 2 and Fi gure 3.  D SC 
analyses of this 16-mer  (shown in Figure 3) revealed 
multiple structural species; with melting temperatures 
at 32 °C and 53 °C. This finding was quite surprising 
because of the self-complementarity of the 16-mer.  
Indeed, the predominant species was the hairpin 

species rather than the duplex species.   
 
To further enhance the hairpin conformation, additional 
bases, T (17-mer) and TT (18-mer) were added i n the 
center of the hairpin-loop region.  As shown in Table 2, 
addition of T and TT to the loop region resulted in 
additional stabilization of the hairpin structure.(4-6) The 
fundamental question was whether these “thermally 
stable” DNA hairpins were effective in modulating TLR9-
induced cell invasion.  
 
Figure 3.  DSC melting profiles of 100 μM truncated 
16mer in Tris-EDTA buffer, pH 7.0.  
 
 

Table 2. The melting temperature (Tm) of DNA 
hairpin structures in 100 mM NaCl BPES as 
determined by DSC. 

Sequence Tm (°C) 
16mer (PS) 54.8 ± 0.53 
17mer (PS) 58.15 ± 0.028 
18mer (PS) 60.58 ± 0.038 
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Figure 4.  T LR9-induced cell invasion assay using 
selected hairpin-forming deoxyoligonucleotides.   
 
These DNA hairpins were then tested for their ability to 
influence TLR9-mediated cancer cell invasion and as  
shown in Figure 4, the hairpins demonstrated 
considerable invasion-inducing capacity.  A lthough the 
cell invasion level was not as high as the control ODN-
M362, these DNA hairpins have a “ native” sugar-
phosphate backbone rather than the phosphorothioate 
backbone of the ODN-M362.  Hence, these DNA hairpins 
fully mimic the DNA fragments released as apoptotic 
DNA. 
 
The 9-mer Hairpin.  A  further refinement of the DNA 
hairpin model system arose by deleting bases from the 
stem (duplex portion of the hairpin) and m utating the 
base sequence within the hairpin loop region.   

Modification of the loop sequences resulted in considerable diversity in hairpin stability.  Table 3 (provided on 
the left) shows each of the 9-mer sequences and loop 
variations associated with these studies. 
 
In 1994, Hirao reported a very stable hairpin containing a 
three-nucleotide (GAA) loop.(7) We incorporated this loop 
into our trimmed hairpin, removing the T and TT bases, 
resulting in the sequence, 5’-CGCGAAGCG-3’.  A 
thorough biophysical characterization was done on t his 
hairpin that demonstrated an unusually high melting 
temperature of 89 °C by differential scanning calorimetry 
(DSC).  Structural analysis of our hairpin, 9-mer, by NMR 
reveals that this unusual stability results in part from 
Hoogstein-base paring between G4 and A6.(8,9)  A more 
complete description of the structural and ener getic 
features of this hairpin is provided below. 
 
Thermal denaturation of mutated hairpins using 
differential scanning calorimetry (DSC), however, gave us 
an indirect means on not only demonstrating the 
existence of the reverse hoogstein pair, but also allowed 
us to quantify the stabilizing effects of key functional 
groups that exist in the loop.highly thermal stable with a 
melting temperature of 76 °C in 0.1M NaCl. The 9-mer 
hairpin was demonstrated to be nuclease resistant by UV-
visible spectroscopy.(10)   

 
Further analyses by NMR spectroscopy have revealed that G4 and A6 form a reverse Hoogstein base pair. In 
order to demonstrate this relationship, structural NMR experiments and select nucleotide mutations of the loop 
bases were performed.  Hirao was the first to solve a solution structure of a hairpin containing the GAA loop 
sequence, and although direct evidence of hydrogen bonding between his G3 and A5 was not apparent, he 
was able to point out key NMR characteristics of the hairpin, such as the upfield shifts for the non-hydrogen 
bonded G3 imino and the A4 4’ sugar residue.  Proton NMR experiments performed by James and coworkers 
was also unable to demonstrate the reverse Hoogstein base pair directly, but did note a strong NOE cross 
peak between the loop guanine H1’ and the second loop adenine H8.(11) 
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Purified synthetic oligonucleotides referenced in Table 3 were purchased from Midland Certified Reagent 
Company; Midland, TX and dissolved in BPES buffer (10mM sodium phosphate buffer with 1mM EDTA pH 
7.0) containing 100mM NaCl.  The deoxyoligonucleotide was then annealed by heating the sample above the 
melting point and then slowly cooling to room temperature.  Sample concentrations were determined 
spectroscopically at 260nm on a Cary 100 UV-vis spectrophotometer at 90 °C. To probe the effects of reverse-
Hoogstein base paring, a series of mutations at the 4, 5, and 6 base positions were undertaken as described in 
Table 3.  Mutations of the bases within the loop sequence were chosen so as to perturb either loop base 
stacking and/or hydrogen bonding between G4 and A6. Mutating the G4 to an i nosine or A6 to nebularine, 
results in the loss of the reverse-Hoogstein base pairing capability either separately or together while 
maintaining optimal base stacking conditions. Mutations of 5-position base from an adenine to thymine or uracil 
allowed us to analyze disruptions in base stacking within the loop sequence.  
 
Differential Scanning Calorimetry - The melting temperatures and the associated heats of unfolding for each 
hairpin were determined using a Microcal VP-DSC (GE Healthcare, Northampton, MA). Deoxyoligonucleotide 
samples were prepared at strand concentrations from 200 – 400 μM in BPES buffer and verified by UV-Vis 
spectroscopy. Each sample was melted at a rate of 90 °C/hour from 5-120 °C and repeated no less than 5 
times.  R eference scans were also produced by analyzing buffer versus buffer in the same manner as the 
samples.  Data were analyzed using Origin 7.0 VP-DSC software by first subtracting a reference scan (buffer 
versus buffer) from the raw data and the normalizing to strand concentration, producing heat capacity versus 
temperature plots. The data was then baseline corrected by connecting the pre and post-transition baselines 
with the cubic function provided within the software and subtracting the resulting baseline from the data. From 
the thermodynamic relationship, 𝛥𝐻𝑐𝑎𝑙 = ∫𝛥𝐶𝑃(𝑇)𝑑𝑇 , integrating the total area under the resultant melting 
curve provides the enthalpy of unfolding (ΔHunfold), while the midpoint of the transition provides the melting 
temperature (Tm). The change in Gibb’s free energy (ΔG) can then be derived by using 𝛥𝐺0(𝑇) = 𝛥𝐻[1 − 𝑇

𝑇𝑚
] at 

any reference temperature, for our calculations the Gibb’s free energy was calculated at 37 °C. 
 

 
 
Differential scanning calorimetry allows us to monitor the change in heat capacity at constant pressure while 
increasing temperature. From this, we can calculate the melting temperature, the change in enthalpy upon 
melting and the standard Gibbs free energy at a given temperature.  As seen in Table 4, mutations within the 
loop sequence have significant influence on the thermodynamic stability of the 9-mer hairpin. By mutating A6 to 
a thymine, we see a decrease of 25 degrees the melting temperature, while a mutation of A5 to thymine only 
decreases the Tm by 4 degrees. In contrast,  if we analyze the changes in enthalpy we see that mutating either 
adenine to a thymine has a destabilizing effect.  The changes in melting temperature may be attributed to a 
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disruption in both hydrogen bonds between G4 and A6, as well as a disruption in stabilization of base stacking 
contributed by both adenines.  
 
 In order to determine the magnitude of the contribution of the reverse Hoogstein base pair to the native 
structure without disrupting the stabilizing base stacking effects, we selectively mutated G4 to an inosine base 
residue and A6 to nebularine base residue.(9)  As seen in Figure 4,  both inosine and nebularine resemble their 
parent structures of guanine and adenine perfectly except for the absence of their respective amino groups.  

 
Figure 4.  Mutations of adenine to nebularine or guanine 
to inosine allows us to selectively remove hydrogen bond 
donating groups without perturbing the base stacking 
contributions of the native base. 

As seen in Table 4, these mutations also decrease the 
melting temperature, enthalpy and f ree energy. Mutating 
G4 to inosine drops the melting temperature by 19 
degrees.  M utating the A6 to nebularine results in an 11  
degree decrease in the Tm. When both the G4 and A6 are 
mutated so that the ability to form the reverse Hoogstein 
base pairing is lost, the melting temperature drops by 24 
degrees, similar in magnitude to that of mutating A6 to 
thymine; however, the enthalpy of melting is slightly higher 
for loop IAN than for GAT, suggesting that the thermal 
stability of the loop is largely dependent on the base 
pairing of G4 and A6 as well as the base stacking 
interactions within nucleotides between the loop and stem.  

It is also interesting to note that by removing the hydrogen bond donor capabilities of adenine by mutating to 
nebularine, we do not see the same effect on the melting temperature as we do when we mutate the guanine.  
It is possible to imagine that the guanine hydrogen bond is more stabilizing than that of the adenine’s should 
the guanine base be t ilted along the phosphate backbone in such a way as to not disrupt the guanine’s 
hydrogen bond but to make adenine’s more flexible  and thus less stable.  This degree of tilt could be attributed 
to the stacking of A5 with its amino group juxtaposed over G4, constricting G4 between C3 and A5 as seen in the 
solution structure in figure #. The stacking of A5 upon G4 instead of upon A6 also allows A6 a slightly higher 
freedom of rotation about the phosphate backbone, which could also destabilize its hydrogen bond to guanine. 
Regardless, it is interesting to note that within the 9-mer hairpin, not all hydrogen bonds are equal.  
 
In addition, we examined the effects of mutating adenine to either thymine or uracil.  Both T and U seemed to 
have the same effect on the stability of the hairpin. Mutating A5 to either thymine or uracil appears to result in 
only slight decrease the loop stability; in contrast, mutating A6 dramatically decreases the thermal stability. It 
was initially postulated that a mutation to a thymine residue would result in a larger effect on the loop stability 
when compared with uracil due to the presence of the bulky hydrophobic methyl group; however our studies 
suggest that there are no significant energetic differences between the T and U mutations. This may suggest 
that the methyl groups are buried within the molecule as opposed to being exposed in the solvent as 
suggested by from molecular modeling studies.   Additional studies are underway to determine the hydration 
properties of the 9-mer mutants to discern the role of bound waters on structural stability.  
 
Structural Analysis of the 9-mer Hairpin - Samples for NMR analysis were prepared at single strand 
concentrations of 1mM in BPES buffer. For analysis of exchangeable protons, samples were prepared in H2O 
buffer and 10% D2O was then added. For NMR analysis in 100% D2O, the water samples were lyophilized and 
reconstituted into the same initial volume with D2O, lyophilization and reconstitution in D2O was repeated three 
times to remove trace amounts of H2O. All of the NMR experiments were performed on a Bruker Ultrashield 
700 mHz spectrophotometer coupled with a Bruker TCI cyroprobe.  NOESY spectra for 90% water and 100% 
D2O samples were obtained at various mixing times ranging from 50 to 400 ms at 298K. COSY, DQFCOSY 
and TOCSY spectra were also obtained at 298 K to determine scalar coupled protons. Solvent suppression 
was achieved using the Bruker derived excitation sculpting gradient pulse (find source). All spectra were then 
processed using Bruker Topspin 2.1. 
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NOE peaks were assigned and g aussian fit integrated using SPARKY (Goddard). The peaks from each 
NOESY spectra were used for distant constraints while all other spectra were used to confirm peak 
assignments. Distances derived from non-overlapping peaks were assigned an er ror of +/- 10% while 
overlapping peaks were given an er ror of up to +/- 50%. The SPARKY derived integrated peaks from each 
spectra were then averaged, normalized and converted to distance constrains using RANDMARDIGRAS (Liu, 
1995) from MARDIGRAS (Borgias, 1990). The resulting distance restraints were then converted for use with 
AMBER by MARDIGRAS. The solution structure was then derived by coupling the resulting NMR distance 
restraints with a molecular dynamic simulated annealing procedure using generalized Born implicit solvation 
with AMBER utilizing the previously derived theoretical structure.  
 

Figure 5.  Representative NOESY data obtained for the 9-mer 
deoxyoligonucleotide hairpin, 5’-CGCGAAGCG-3’.  Data were 
obtained on a B ruker Avance II 700 M Hz NMR with TCI 
Cryoprobe at 25 °C.  A mixing time of 250 ms was used. 
 
NMR melts of samples in 100% D2O BPES were performed 
on a Bruker ultrashield 400mHz with BBO probe. 1D proton 
NMR spectra were collected from a temperature range of 25 
to 90 °C at intervals of 5 °C (data not shown). Spectra were 
processed and analyzed using Bruker Topspin2.1.  With DSC 
analysis, we were able to monitor the temperature at which 
the 9mer hairpin melted, but with NMR analysis, we were able 
to monitor the sequential unfolding of the hairpin. A plot of the 
change in the chemical shift (∆δ) of the aromatic and imino 
protons with increasing temperature allows us to determine 
the melting temperature of each base pair and discern a 
mechanism for the melting of the hairpin. A plot of the shift 
changes versus temperature provides a hyperbolic curve, 

where the maximum of the curve indicated the temperature at which the base the aromatic proton belongs is 
no longer paired with its partner. 
 

 
 
NMR solution structure 
 
High resolution NMR provides a unique method for determining the structural features of biomolecules in their 
hydrated state.(12,13)   This is especially important for nucleic acids whose structures and stabilities are highly 
dependent on t heir hydration state.  The solution structure for the native 9-mer hairpin was determined by 
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normalizing and av eraging the assigned NOE peaks (Table 3) from three NOESY experiments with mixing 
times ranging from 50  to 300 ms. The peak areas were converted to distance constraints and used by AMBER 
to derive the solution structure as seen in Figure 6. The NMR structure for the 9-mer hairpin (5’-
CGCGAAGCG-3’) is in good agreement with the 6-mer hairpin (Hirao 1994).(8)  Our NMR studies reveal 
persistent exchangeable resonances assigned to the G4 2-amino and A6 6-amino resonances.  The hairpin 
structure derived from AMBER put these protons within 1.8 Å of their respective H-bond acceptor atoms (N7 
on A6 and N 3 on G 4) making this reverse Hoogstein base pair highly probable for the G4 and A6 bases.   
Additional support for reverse Hoogstein basepairing comes from our observation of NOE crosspeaks between 
H4’ of the G4 sugar to the H2 of A6.  The AMBER structure predicts the distance between these protons to be 
4.2 Å, well within distance for observation of NOE contacts. The majority of the sugar residues were readily 
assigned and agree well with previous reported assignments for similar structures (Hirao, Ulyanov),especially 
with signature shifts such as the upfield shifts of A5 H4’ around 2 ppm and the upfield shift of the nonhydrogen 
bonded G4 H1 around 10 ppm that disappears at temperatures above 10 °C. 
 

Figure 6.  (Left) Solution structure the 5’-dCGCGAAGCG-3’ hairpin 
derived from NOE distance constraints from NOESY and TOCSY 
NMR data and AMBER.     
 
The NMR solution structure of the 9-mer hairpin is shown in Figure 
6.  NMR studies reveal the presence of the persistent 
exchangeable resonances (G4 2-amino and A6 6-amino) formed 
by the reverse Hoogsteen base pairs formed between G4 and A6 
providing direct evidence of loop stabilization for the hairpin.   
 
Figure 7. (Right) The reverse 
Hoogstein base pairing formed 
between the G4 2-amino and 
A6 6-amino protons are 
illustrated.   
 

Energetic evidence provided by both the by DSC analysis of loop 
mutations as well as the NMR melts supports the GAA tri-loop structure.  
When  the hydrogen bond donor capabilities of adenine is eliminated by 
mutating A6 to the modified base,  nebularine, we do not  see the same 
effect on the melting temperature as we do when we mutate G4 to inosine.   
 
Although the formation of the reverse Hoogstein base pair is evident from the NMR structure, the marked 
stability of the 9-mer hairpin cannot be explained solely because of these two H-bonds stabilizing the G-A base 
pair.  At best, the reverse Hoogstein base pair may contribute 4-5 kcal/mol of additional stability to the hairpin.  
However, we speculate that the guanine provides a more stabilizing effect than adenine due to the orientation 
of the guanine due to a more favorable stacking conformation.  The degree of tilt of this base may be attributed 
to the stacking of A5 with its amino group juxtaposed over G4, constricting G4 between C3 and A 5 as 

observed in the solution structure. Furthermore, the 
stacking of A5 upon G4 instead of upon A6 also allows 
A6 greater flexibility about the phosphate backbone, 
which could have destabilizing effects with its hydrogen 
bond to guanine.   
 
Figure 8.  TLR9-induced cell invasion assay using 
selected hairpin-forming deoxyoligonucleotides.  The 9-
mer hairpin (native backbone and phosphorothioate 
backbone show no difference in their stimulation of TLR9 
mediated cell invasion, indicating the 9-mer (native 
backbone) is just as nuclease resistant as the modified 
backbone. 
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This difference in stabilization between the G4 and A6 is also reflected in the NMR melting studies.  Analyses 
of the shift changes upon heating of the G4 and A5 aromatic protons (H8 and H2) reveal  l ittle changes until 
the temperature reaches 60 °C, where as the aromatic protons of A6 (H8 and H2) show chemical shift changes 
at much lower temperatures, indicative of greater flexibility of A6 as compared to G4 and A5. The stability of 
the 9-mer hairpin structure results in this deoxyoligonucleotide being resistant to nuclease digestion (data not 
shown).  H owever, the true test of our hypothesis was to determine whether this 9-mer hairpin would be 
effective in eliciting a TLR9-mediated cell invasion response.  Figure 8 shows the results of our invasion assay 
studies, clearly indicating that the 9-mer was highly effective (even as a “native” sugar-phosphate backbone) in 
inducing TLR9-mediated cell invasion. 
 
A summary of our findings with the 9-mer hairpin is provided below:  
 

• The 9-mer d(C1G2C3G4A5A6G7C8G9) is very proficient in inducing TLR9-mediated cancer cell 
invasion.  

• This 9-mer does not require phosphothioate backbone modification to be effective in matrigel 
invasion assays; the phosphodiester (native DNA sugar-phosphate linkage) is sufficient. 

• The 9-mer form an unusually stable hairpin structure, with a Tm of 88 °C. 
• The structure of this 9-mer hairpin as determined by NMR shows increased stabilization due to 

the G4A5A6 loop sequence wherein the G4 and A6 form a Hoogstein-like base pair and the A5 
stacks across this G4 : A6 base pair. 

• The unusual stability of this GAA tri-nucleotide loop is now being implemented in other 
sequences to provide a “molecular staple”. 

 
The Human Telomeric G-quadruplex as a TLR9 Agonist.  Our laboratory is exploring the design, synthesis and 
characterization of a number of other structurally stable DNAs that due to their structural stability are rendered 
nuclease resistant and have persistence within the cell.  O f particular interest to us is the human telomeric 
sequence d[AGGG(TTAGGG)3.  This sequence is found at the ends of human chromosomes and due to the 
nature of the repetitive GGGs forms G-tetrads that consequently stabilize into a s table secondary structure 
known as the G-quadruplex (Figure 10). (14)  Of particular interest to this project is quest to characterize the 
properties and/or features of the “apoptotic” DNA that can induce TLR9-mediated cancer cell invasion, the 
endogenous human telomere DNA may be of significant interest.  Breast cancer cells up-regulate telomerase 
resulting in the continuous elongation of the telomere region of the chromosomes; hence imparting immortality 
to the cancer cells.  Upon treatment of cancer cells by chemotherapeutic agents that induce cellular apoptosis, 
the DNA in the cells are degraded by a host of nucleases.  The surviving DNA fragments from the apoptotic 
cells must have some mechanism for nuclease resistance.   
 

Figure 9.  Parental MDA-MB-231 cells treated with 5 µM 
(strand) ODN-M362, 9-mer (wild type) or hTel-22 G-
quadruplex in Matrigel-matrix. Induction of breast cancer 
cell invasion by deoxyoligonucleotides mediating TLR9.  
The human G-quadruplex (h-Tel 22 mer) is highly efficient 
at stimulating TLR9 mediated cell invasion. 
 
The human telomeric DNA consists of a repetitive 
sequence that is approximately 150-200 kilobases in 
length. (14)  The terminal end of  this sequence has a 3’  
single stranded overhang with the tandem repeat of 5’- 
TTAGGG-3’ that has been demonstrated to form stable G-

quadruplex structures, in vitro. (15,16) The formation of G-quadruplex structure inhibits the attachment of 
telomerase and the enzymatic extension of the telomere that is often associated with most cancer cells. (17, 
18)  The human telomeric G-quadruplex structure has three stacked G-tetrads connected by -TTA- loops.  The 
nature of the loop connectivity gives rise to the alternate conformations that have been observed by NMR and 
X-ray crystallographic methods under varying solution conditions.  The most notable structural differences are 
between the sodium and potassium forms.  Sodium based buffers result in an all antiparallel strand orientation 
with glycosidic bond an gles that are all anti conformations.  H owever, the loop connectivity may differ and 
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either be al l lateral loops, the “chair” conformation or have two 
lateral loops and one diagonal loop, the “basket” conformation, 
both Na+ conformations and their loop connectivity can be seen in 
Figure 10.   
 
Figure 10.  DS C experiment showing the thermal melting 
transition of G-quadruplex structure formed by hTel-22 in sodium 
phosphate buffer. 
 
 
The energetics of G-quadruplex unfolding and the enthalpic 
(ΔHunfold) and entropic (ΔSunfold) contributions to the thermal 
stability have been reported by several research groups using a variety of methods.  Shown in Figure 10 is a 
DSC analysis of h-Tel 22 G-quadruplex stability in Na+ buffer.  Our data shows this G-quadruplex structure to 
melt at approximately 60 °C and undergo two transitions.  In other data (not shown, we have monitored the G-
quadruplex structure by CD spectroscopy, showing characteristic positive peak at 295 nm.   As described in 
Figure 6, we have monitored the hTel-22 G-quadruplex DNA in the presence of a variety of nucleases and 
found this structural motif to infer nuclease resistance to the DNA.  We have also examined the ability of this 
DNA to induce TLR9-mediated cancer cell invasion.   
 
To further investigate sequence effects on t he structural stability of the h-Tel G-quadruplex motif, we have 
investigated the effects of changes to the 5’-flanking end of the h-Tel 22-mer.  These changes and the resulting 
energetic profiles for G-quadruplex unfolding are provided in Table 4 (below). 
 
Table 4.  DSC results for 5’ modifications to the h-Tel G-quadruplex. 
 
    Name          Sequence                  ∆H (kcal/mol)         Tm (°C) 
h-Tel 22mer  5’-AGGG(TTAGGG)3-3’    37.8   67.2 
h-Tel 23mer  5’-TAGGG(TTAGGG)3-3’    43.6   65.4 
h-Tel 24mer  5’-TTAGGG(TTAGGG)3-3’    51.2    62.4 
 
Addition of a T to the 5’ end of the h-Tel 22 results in no significant change in the unfolding temperature (2 
degree drop), but a s ignificant increase in the unfolding energy.  A ddition of a s econd T to form the h-Tel 
24mer continued in this trend, further decreasing the unfolding temperature, but significantly increasing the 
unfolding energy (13.3 kcal/mol) compared with the h-Tel 22mer.  We are currently working to see if these 
energetic changes can be correlated with the ability of these telomeric sequences to modulate TLR9-mediated 
cancer cell invasion. 
 
Task 3.3.  SPR and ITC studies to determine whether DNA sequence, structure, or stability modulates 
TLR9 interactions.  The focus of this specific aim in year 2 has been to examine the interactions of the 
selected deoxyoligonucleotides described in Task 3.2 as well as others that are currently under examination, 
with TLR9 using a variety of biophysical methods.  Because of our difficulty in acquiring TLR9, this aim has not 
been completed.  However, we have received DOD-BCRP approval for a no-cost extension so that the TLR9 
binding studies can be completed.  With our new personnel on board, we will be able to express and purify 
human TLR9 in quantities sufficient to carry out the proposed Task 3.3 studies. 
 
KEY RESEARCH ACCOMPLISHMENTS OVER THE PAST YEAR:  
 

• Completion of the deoxyoligonucleotides design and characterization based on the ODN-M362 
sequence. 

• Development and characterization of an unusually stable 9-mer hairpin [d(C1G2C3G4A5A6G7C8G9)] that 
is stable to 89 °C. 

• Demonstrated that this 9-mer hairpin does not require phosphorothioate backbone modification to be 
nuclease resistant. 

• Demonstrated this 9-mer to be highly efficient at inducing TLR9-mediated cancer cell invasion. 
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• Completed thermodynamic studies on 9-mer hairpin and loop mutations to discern the presence of a 
reverse-Hoogstein base pairing. 

• Completed NMR studies to discern the solution structure of the 9-mer [d(C1G2C3G4A5A6G7C8G9)] 
hairpin.  

• Demonstrated that the h-Tel22  G-quadruplex is nuclease resistant in the folded conformation. 
• Demonstrated the h-Tel22 G-quadruplex DNA formed from the human telomeric repeat sequence is 

highly effective as a TLR9 agonist in inducing cancer cell invasion. 
• Demonstrated addition of bases to the 5’-end of the h-Tel 22mer resulted in significant changes to the 

folding energy of the G-quadruplex motif. 
 

REPORTABLE OUTCOMES:   
 

• Manuscripts Published 
 

- Ketron, A.C., Denny, W.A., Graves, D.E. and Osheroff, N. (2012) “Amsacrine as a 
Topoisomerase II Poison: Importance of Drug−DNA Interactions” Biochemistry 51, 1730-
1739. 

 
- Aldred, K.J., McPherson, S.A., Wang, P., Kerns, R.J., Graves, D.E., Turnbough, C.L. and 

Osheroff, N. (2012) “Drug Interactions with Bacillus anthracis Topoisomerase IV: 
Biochemical Basis for Quinolone Action and Resistance” Biochemistry, 51(2) 370-381. 

 
-  Pitts, S., Jablonsky, M., Duca, M., Dauzonne, D., Monneret, C.,  Arimondo, P.,  Anklin, C.,  

Graves, D.E., and Osheroff, N. (2011) “Contributions of the D-Ring to the Activity of 
Etoposide Against Human Topoisomerase II: Potential Interactions with DNA in the Ternary 
Enzyme-Drug-DNA Complex” Biochemistry, 50(22) 5058-5066. 

 
- Gentry, A.C., Pitts, S.L., Jablonsky, M.J., Bailly, C., Graves, D.E., and Osheroff, N. (2011) 

“Interactions between the Etoposide Derivative F14512 and H uman Type II 
Topoisomerases: Implications for the C4 Spermine Moiety in Promoting Enzyme-Mediated 
DNA Cleavage”.  Biochemistry, 50(15), 3240-3249. 

 
 

• Manuscripts currently in preparation: 
 -  Hudson, J.S., Ding, L., Ma, J. Lewis, E. and Graves, D.E. (2012) “Recognition and   
  Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1 (UP1)”, manuscript 
  in preparation for Biochemistry. 
 
 - Kauppila, J.H., Karttunen, T.J,, Saarnio, J., Nyberg, P., Salo, T., Graves, D.E., Lehenkari,  
  P.P, and Selander, K. (2012) Short DNA Sequences and Bacterial DNA Induce Invasion in  
  Gastrointestinal Malignancies in vitro, manuscript submitted to Cancer Research 
 
 - Hayden, K.L., and Graves, D.E. (2012) “Structural and Thermodynamic Characterization of  
  a Highly Stable DNA Hairpin”, manuscript in preparation for Nucleic Acids Research. 
 
 - Hudson, J.S., Ding, L., Lewis, E., Graves, D.E. (2011) “Quadruplex Unfolding:  Influence of  
  Loop Mutations on Structural Stability”, manuscript in preparation for Biochemistry. 
 

• Abstracts from presentations at regional and national meetings: 
 
 - Lanier, Kate and Graves, David E. Structural and thermodynamic analysis of a highly stable 
  DNA hairpin. 63rd Southeast Regional Meeting of the American Chemical Society,   
  Richmond, VA October 26-29, 2011. 
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 - Aldred, Katie J., McPherson, Sylvia A.,  Lindsey, R. H.; Wang, Pengfei; Kerns, Robert J.,   
  Graves, David E.,  Turnbough, Charles L. and Osheroff, Neil. “Quinolone Resistance in  
  Bacillus anthracis Type II Topoisomerases” 63rd Southeast Regional Meeting of the   
  American Chemical Society, Richmond, VA October 26-29, 2011.  
 
 - Brooks, S., Selander, K.S., Harris, K.W., and Graves, D.E. (2011) “Structure and Stability of  
  Deoxyoligonucleotides that Induce TLR9-mediated Cancer Cell Invasion”. Era of Hope –  
  Congressionally Directed Medical Research Programs, Orlando, FL, August 2-5, 2011. 
 
 - Lanier, K.L., Ottenfeld, E. and Graves, D.E. (2010) “Structural Analysis of a Highly Stable  
  DNA Hairpin”. Joint 66th Southwest and 62nd Southeast Regional Meeting of the American  
  Chemical Society, New Orleans, LA, Dec. 1-4, 2010. 
 

• Degrees Awarded 
 
 - none 

 

CONCLUSION:  The research that has been completed over the past year continues to demonstrate a direct 
correlation between structural stability of deoxyribonucleotides and their ability to induce TLR9-mediated 
cancer cell invasion.  Our research focused on the structural and biophysical characterization of two key stable 
DNA structures; the 9-mer hairpin formed by 5’-CGCGAAGCG-3’ and the human telomeric G-quadruplex 
formed by 5’-AGGG(TTAGGG)3-3’.  Both structural motifs were demonstrated to be nuclease resistant; hence, 
mimic DNA fragments released upon cellular apoptosis rather than requiring backbone modifications as 
needed for ODN-M362.  We have utilized calorimetry (ITC and DSC) to characterize the structural stability and 
high resolution NMR to determine the solution structure of the 9-mer hairpin.  We found an unusual reverse-
Hoogstein base pair between the G4 and A6 in the tri-base loop and that this interaction was needed to fully 
stabilize the hairpin.  Although the two hydrogen bonds generated by the G4.A6 interaction are not sufficient to 
explain this markedly high stability, their presence is speculated to be needed to direct proper base stacking at 
the interface of the loop and stem regions. 
 
We are very excited with our findings that the human telomeric G-quadruplex can induce TLR9-mediated 
cancer cell invasion.  T his is exciting for two reasons:  Fi rst, this is an endog enous sequence found to be 
overexpressed in all cancer cells due to the upregulation of telomerase.  The extension of the telomeric region 
of the chromosomes results in unlimited capacity for cell division; hence, cancer cell immortality.  For  this 
reason, the telomere and telomerase have been a novel target for future anticancer drug development.  
Secondly, the human telomere can fold into discrete highly compacted 3-dimensional structures known as the 
G-quadruplex that we have shown to be nuclease resistant.  Hence, in cancer cells and in particular, cancer 
cells treated with chemotherapeutic agents and induced to undergo apoptosis, the DNA is digested and 
released from the dead cell.  DNA surviving this apoptotic process must be nuclease resistant. 
 
On the dark side, it appears that human telomere G-quadruplex DNA is highly efficient in induction of TLR9-
mediated cell invasion pathway.  H ence, it is of critical importance to discern the role of these structurally 
stable, nuclease resistant DNAs in their abililty to modulate TLR9-mediated pathways. 
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